TAU:0366-2141,2180
| Analysis 3,4
| 2013/2014
|
- Lecturer
- Prof. Boris Tsirelson
(School of Mathematical Sciences).
- Instructors
- Michael Bromberg and Dmitry Faifman
- Daniel Rosen
- Prerequisites
- Analysis 2; Linear algebra 2.
- Grading policy
- First semester exam (26.01; 12.09)
- Final exam (11.07; 19.09)
LECTURE NOTES
Preliminaries
- Conventions, notation, terminology etc.
- Euclidean space Rn.
- Appendix: If spaces are not a joy to you.
Differentiation
- Differentiation.
- Open mappings and constrained optimization.
- Inverse function theorem.
- Implicit function theorem.
- Appendix:
What is the Implicit Function Theorem good for? (A discussion on Mathoverflow).
Integration
- Riemann integral.
- Iterated integral.
- Change of variables.
- Convergence of volumes and integrals,
and a correction to it.
Differential forms
- From path functions to differential forms.
- From boundary to exterior derivative; Stokes' theorem.
- Low dimensions, vector fields.
- Exact forms, closed forms, loops and electromagnetism.
- Higher order forms; divergence theorem.
Manifolds
- Chart, orientation, volume form.
- Integration: from single-chart to many-chart.
Summary
Solutions to selected exercises
TEXTBOOKS
ADDITIONAL LITERATURE
-
יורם לינדנשטראוס,
"חשבון אינפיניטסימלי מתקדם" חלק ב'.
-
אלכס קופרמן,
"חשבון דיפרנציאלי ואינטגרלי 2",
אוסף תרגילים, פתרונות והסברים.
EXAMS (in Hebrew)
A quote:
The world is not one-dimensional, and calculus doesn't stop with a single independent variable.
James Nearing, Chapter 8 "Multivariable Calculus" of the
course "Mathematical
Tools for Physics".